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ENDOMORPHISMS OF A LEBESGUE SPACE III 

BY 

WILLIAM PARRY 

A B S T R A C T  

A new invariant is introduced for regular isomorphisms, which are isomorph- 
isms by codes that anticipate a finite amount of the future. With the help of 
this invariant it is shown that the Bernoulli automorphism ( p , q ) i s  not 

regularly isomorphic to the Markov automorphism ( P q l ,  p q, and that 
\ / q P  

neither of these is regularly isomorphic to the Markov automorphism Pq . 

O. Introduction 

This paper is a continuation of [1] and [2]. In [!] Peter Waiters and the author 

investigated the isomorphism problem for endomorphisms of a Lebesgue space 

from the point of view of faithful coding without anticipation. In [2] Robin 

Fellgett and the author modified this point of view so that anticipatory codes 
between automorphisms were allowed if they anticipated only a finite amount 

of the future. Such codes are called regular isomorphisms. The purpose of this 

paper is to introduce a new regular isomorphism invariant. Concretely we are 

able to show that the Bernoulli automorphism (Pq~ is n o t  regularly isomorphic 
\/Pq 

the Markov automorphism (Pq}(p ~ q), and neither of these is regularly 
/ \ 

to 
\/qP 

isomorphic to the Markov automorphism (qP).  
Pq 

The associated endomorphisms are not isomorphic, as has been shown in [3], 

[4], [5] and [1]. That the automorphisms are isomorphic (without qualification) 

follows from [6], since they have the same entropy. In other words, the 

substance of our concrete result is that any faithful code between two of these 

examples must anticipate unbounded amounts of the future. 
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1. Definitions 

Let T be an endomorphism of the Lebesgue space (X, ~ ,  rn ) and let T be its 

natural extension to the Lebesgue space ( .~ ,~, rh) ,  so that we have a 

commutative diagram: i" 

X--> X 

T 

and ~ = 1r ' ~  has the properties: T - ' ~  C ~ ,  ~n~  1, ~ (c.f. [7]). With this set 

up we call (.~, ~ ,  ~ ,  rh, I") a process and ~ is called its future. 
Two processes (.~, ~ ,  ~ ,  th, ~ )  are said to be regularly isomorphic if there 

is an isomorphism 4~ (&T, = T2~) such that (j~-1~2c'yk~l, &~i C~'~2k~2 for 

some k ~ 0. Two endomorphisms (X~, ~ ,  rni, T~) are said to be shift equivalent 
if there exist homomorphisms 4~, 4 ~ with ~T1 = T24~, 4iT2 = T,O and ~4~ = T, k, 

4~  = T2 k for some k _-> 0. (This notion was introduced by Williams in [8]. [9] for 

topological and algebraic categories.) 

In [2] the following proposition was proved which enables us to dispense 

with automorphisms, when investigating regular isomorphy. 

PROPOSITION 1. TWO processes are regularly isomorphic if and only if their 
associated endomorphisms are shift equivalent. 

If M, ~ are two sub-t~-aigebras of J3,I(M/~) will denote the conditional 
information of M given ~ and we shall refer to I(~/T-~)=IT as the 

information function of (X, ~ ,  m, T). 
If T~, /'2 are shift equivalent by ~, ~b then 

(1.1) I (~ , /T~ '~ , )  = I(~z/T2'~2)ocb + g T , - g ,  

where g = I(~,/4~ - ' ~ ) .  This relationship can be expressed by saying that the 

two information functions are cohomologous. (Functions of the form g T , - g  

are additive T, coboundaries.) The main aim of [2] was to exploit this 

relationship via a numerical invariant. Here we introduce a group invariant 

which, happily, is frequently computable and often non-trivial. The point to be 

stressed is that any other canonical function satisfying (1.1) would serve us in 

place of the information function. (But what canonical functions are there?) 

If T is an endomorphism of (3(, ~ ,  rn) we can define an infinite measure 

preserving transformation T' on X × R called the canonical line extension of T 

by 
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T'(x, y) = (Tx, y + IT(X) -- f ITdm ). 

We can also define canonical circle extensions on X × K (where 

K = {z :1 z I = 1 }) by T'(x, y) = (Tx, z • exp 2~ri [c + dIr (x)]) for each c, d E R. 

Using (1.1) it is not difficult to prove: 

PROPOSITION 2. If T~, T2 are shift equivalent endomorphisms then their line 

extensions are shift equivalent and their circle extensions (for each c, d E R ) are 

shift equivalent. 

The purpose of this proposition is, that by distinguishing between extensions 

one automatically distinguishes between the base endomorphisms.  We have 

not so far been able to employ line extensions. Circle extensions,  however ,  are 

implicitly used in the remainder of this paper, through the following invariant: 

Let  A(T) = {(c,d) E R x R :exp2~ri(c + dIr) = F ( T ) / F f o r  s o m e  m e a s u r a b l e  

F:X-->K}.  In this definition IT may be replaced by any other function 

additively cohomologous to it. Clearly A(T) is a sub-group of R × R. 

THEOREM i. If  T~, T2 are shifl equivalent and l(~ffT;'~3~) is finite a.e. then 

A(T,) -= A(T2). 

This is a simple application of (1.1). 

2. C o m p u t a t i o n s  of A ( T )  

(2.1) /3 transformations 

Let  Tx = f i x  m o d  1 w h e r e  fl > 1. There  is a T invariant  probabi l i ty  m e a s u r e  m 

equivalent to Lebesgue measure 1 on [0, 1) such that dm/dl  is bounded and 

bounded away from zero [9], [10], [11]. It is not difficult to show that 

I(~3/T ~g3) is cohomologous to log dlT/dl-~ log/3. Hence  

A ( T ) =  { ( c , d ) : e x p 2 r r i ( c + d l o g / 3 ) = - -  . 

Since T is weak-mixing (in fact it is an exact  endomorphism) 

A(T) ={(c ,d ) :c  + d log/3 ~ Z} = {(m - d  log/3, d ) : m  ~ Z ,  d ~ R } .  

(2.2) Markov endomorphisms 

Let  T be a Markov endomorphism defined by the transition matrix P and 

stable initial vector  p (pP = p )  where Ep ( i ) =  I. Then 

[ P(J) ] I ( ~ / T - ~ ) ( x ) = l ° g  p ( i ) - -~ , j ) J  when xo=i,  x ,= j .  
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This function is cohomologous to J ( x ) = - l o g P ( i , j ) ,  where xo = i, x, =] .  

Hence  

A(T) = {(c, d) : exp 2zri[c - d log P(i, j)] = F( j ) / F ( i )  

for  some F mapping the states to K}. 

This latter remark depends on the following: 

PROPOSITION 3. I f  Tis  a Markov endomorphism and if F:  X--~K is such that 

F T / F  depends on the first m + l variables x0,xl, ... x,~ only, then F depends on 

only the first m variables xo, x , - . .  x,,_,. 

(2.3) Bernoulli endomorphisms 

As a special case of (2.2) we see that . i f  T is a Bernoulli endomorphism 

defined by the probability vector  p, then 

A(T) = {(c, d): exp2rri  [c - d logp( i ) ]  = 1 for all i}. 

Let  T be based on (½, ~ I ~ ~, ~, ~, ~) and let S be based on (~, a, a, ]). (7", S were proved 

to be isomorphic by Meshaikin. In [2] it was shown that they are not regularly 

isomorphic. Here we present another  proof.) 

A ( T ) = { ( c , d ) : c  + d l o g 2 E Z ,  c + d l o g 8 E Z } .  

Hence d = m/21og2,  m ~ Z ,  c = n/2, n E Z, where rn + n  is even, i.e. 

' 21  2 : m + n  iseven,  m , n ~ Z  . 

A(S)={(m - d l o g 4 ,  d): m ~ Z ,  d ~ R } .  

Thus A(T) ¢ A(S), so that S, T are not shift equivalent. We note also that if the 

p (i) are not all identical, then A(T) for a Bernoulli endomorphism is countable,  

so that natural extensions of fl t ransformations are not in general regularly 

isomorphic to Bernoulli automorphisms. This was also proved and discussed in 

[21. 

\Pq / qP ' pq 

Let T~, T~, T3 be the Markov endomorphisms with the above transitic 

matrices. T~ is Bernoulli so that 

A(TI) = {(c, d): c - d logp  ~ Z, c - d logq  U Z}.  
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In other words, we require for m, n E Z 

171 

Hence 

I - log ,og~)  ( ~ ) _  (m) 

l - log  p 
i.e. ( d ) - l o g p / q  ( l°glq ) ( n  m) 

- -  1 " 

A ( T , ) = { ( - m l ° g q + n l ° - g P  n - m  ) } 
log(p/q)  ' log(p/q)  : m, n E Z .  

7"2 is a Markov endomorphism, so we need a function F mapping states to K 
such that 

and 

exp 27ri (c - d Iogp) -- F( l )  _ F(2) 
F(1) F(2) 

F(2) F(1) 
exp 2rri (c - d logq) -- F(I)  = F(2)" 

Hence F(2) = _ F(1). Taking F(2) = F(I),  we get A(T2) D A(T,). Taking F(2) = 

- F ( 1 ) ,  w e  get  c - d logq is a half integer and c - d l o g p  E Z.  H e n c e  

{ ( - m l o g q + a ( n / 2 ) l o g p  (n /2 ) -m '~ .  } 
A(T2) = log(p/q)  ' l -~g(~q ' ) ] '  m,n  E Z 

and A(T~) ~ A(T0. 

Interchanging p, q we see that 

- l o g ( p / q )  ' - l o g ( p / q ) ] :  m , n ~ Z  

--/( log(p/q)  logp, log(p/q)  ]" m,n 

Hence the groups A(T,), A(T2), A(T3) are all distinct and no two of T~, T~, T3 
are shift equivalent. In other words, no two of I',, 7"2, T3 are regularly 
isomorphic. 

3. C o m p a c t  a b e l i a n  g r o u p  e x t e n s i o n s  of  M a r k o v  e n d o m o r p h i s m s  

In conclusion we mention one more application of Proposition 3, which latter 
depends on the following: 
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LEMMA. I f T i s a n e n d o m o r p h i s m o f ( X , ~ , m ) a n d T - l ~ t  C~t C~ ,  then either 

f is measurable with respect to ~ or E (f I V;7_0T °~) - -0  a.e. whenever f T / f  is 

~l measurable and [[I = 1. 

The application we have in mind is the following 

THEOREM 2. Let T be a mixing Markov endomorphism on X and let ~ be a 

function ofn  + 1 variables to a compact abelian group G, then S: X × G--~X × G 

defined by S(x,  g) = ( Tx, q5 (Xo, ..., xn )g ) is an exact endomorphism if and only if 

F ( x l . . . x , )  
F ( x o . " x ~ - o - k 3 ' ° ~ b ( x ° ' " x " ) '  I F [ = I ,  T E d ,  [ k [ = l  

has only the solution 3' ~- 1. k = 1, F constant. 

(I am informed by Paul Shields that Roy Adler and he can show that under 

the above exactness condition S is Bernoulli. Ken Thomas also has a proof that 

is Bernoulli.) 
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